MARK SCHEME for the October/November 2012 series

4037 ADDITIONAL MATHEMATICS

4037/22 Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – October/November 2012	4037	22

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2, 1, 0 means that the candidate can earn anything from 0 to 2.

Page 3 Mark Scheme		Syllabus	Paper
	GCE O LEVEL – October/November 2012	4037	22

The following abbreviations may be used in a mark scheme or used on the scripts:

- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy.
- OW –1,2 This is deducted from A or B marks when essential working is omitted.
- PA –1 This is deducted from A or B marks in the case of premature approximation.
- S –1 Occasionally used for persistent slackness usually discussed at a meeting.
- EX –1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

	Pa	ge 4	Mark Scheme			Syllabus Pap		
		GCE O LEVEL – October/November 2012			2	4037	22	
1		5 = 3x - 1	3	M1	Equate a	and attempt to s	solve	
		-4.5 o.e.		A1	-			
		-5 = 3x + 1	13	M1	Equate	1		
		0.8 o.e.		A1	Mark fin	al answers		
	OR	oro and Ea	unto	[4] M1	Doth ovr	maggions must	have 2 torms	
		are and Eq $\frac{2}{2} + 37x - 3$	6(=0) o.e.	A1	Both expressions must have 3 terms Three terms			
		(-4)(2x+9)		M1		e or formula of	three term	
		0.8 and x =		Al	quadratic.			
	OR				1			
	Plot	y = 7x +	5	M1		nd intercepts m		
	Plot	y = 3x -	13	M1	Shape ar	nd intercepts m	ust be correct	
	x =			A1				
	x =	-4.5		A1				
	(d A	1).		B1,B1				
2	$\left(\frac{1}{dr}\right)$	$\left(\frac{l}{r}\right) = 4\pi r + 1$	0π	M1	, d	A		
				1111	Their $\frac{d}{d}$	r		
	Use	$\frac{dt}{dt} = \frac{dt}{dr} \times$	$\frac{\mathrm{d}r}{\mathrm{d}t}$ with $r = 6$			-		
	6.8	ui ui	d <i>i</i>	A1	Rounds	to 6.8		
				[4]				
3	Rea	rrange to a	$x^{2} + bx + c = 0$	M1				
5		(-1)(2x - 7)		M1	Factorise	e or formula		
		and 3.5		Al	1 4000110	• • • • • • • • • • • • • • • • • • • •		
	0.5	< <i>x</i> < 3.5		A1	not ≤ n	nark final state	ment.	
				[4]				
4	(i)	$8(2^3)$ or 5	66	B1				
		8 (2 ³) or 5 -448(x^5)		B1	Mark fin	al answer		
				[2]				
	(ii)	$1120(x^4)$		B1				
		-	120 and their –448 used	M1				
		$1792(x^5)$		A1				
				[3]				
5	(i)		of 6, 5, 4, and 3 only	M1	Numbers	s listed but not	added.	
		360		A1				
	/	D · 1		[2]				
	(ii)		of 2×3 for outside digits	B1 D1	⁴ D	correctly.		
			of 4×3 for inside digits	B1 B1	r_2 used	contectiy.		
		72		[3]				
6	(i)		s powers of 2	M1	At least	one : 2^{6y-9} or 2	2^{4x-4y} o.e.	
		Correctly	reaches $3x + 2y = 6$	A1 AG				
	(ii)	Express	s powers of 5	[2] M1	Both cor	Trect 5^2 and 5^{3x}	⁻⁶ 0.6	
	(II)	y = 3x - 4		A1	Three ter		0.0.	
			o solve simultaneous equations	M1		rms 1s must be line	ar	
		14	2		_			
		$x = \frac{14}{9}$ and	$1y = \frac{1}{3}$	A1	Accept c	lecimals that ro	ound to correct 3sf	
		,	5	[4]				

Page 5			Mark Scheme			Syllabus	Paper	
		GCE O LEVEL – October/November 2012		2	4037	22		
7	(i)	$sec^2 4x \times 4$		M1 A1	One	term only		
	(ii)	$x + \tan 4x$ $\div 4$		[2] B1 M1 A1	No a isw	Jo additional terms		
	(iii)	÷ 4 Correct us	e of limits	[3] M1	Expr	Expression must have 2 integrated terms in <i>x</i> from (ii).		
		$k = \frac{1}{8}$		A1 [2]	Rounds to 0.125. Accept $\frac{\pi}{8}$ or 0.125π			
8	(i)	$(b=)\frac{7-4}{8-2}$	$=\left[\frac{1}{2}\right]$	B1 M1	Finding gradient Finding y intercept			
		$(\lg a)=3$ $\lg y = \lg a + \log a + \log y = 3$	blgx or lgy - 4 = b(lgx - 2) $+ 0.5lgx$	M1	lgy =	$\lg y = c + m \lg x$ is sufficient		
		$a = 1000 \text{ c}$ $y = 1000x^{0}$	or 10^3 0.5 or $1000\sqrt{x}$	A1 A1 [5]				
	(ii)	m = 1		B1				
	(iii)	<i>c</i> = 6		[1] B1 [1]				
9	(i)	420 a	80 40 0R 420 40 80	B1	Corre	ect triangle		
		$\alpha = 7.03$	420	M1 A1 A1√ [≜] [4]			ule in any triangle heir <i>v</i> and an angle.	
	(ii)	v sin <i>their</i> l	$\frac{420}{\sin 40}$	M1		of sine or cosine r 80 or 420 or both	ule in any triangle	
		v = 478		A1				
		Use time	$\frac{1000}{v}$	M1	v cal	culated from a tria	ingle	
		2.09 hour	rs or 2 hours 5minutes	A1 [4]	Units required			

Pa	ge 6	Mark Scheme		Syllabus	Paper			
		GCE O LEVEL – October/Nove	2 4037	22				
10 (i)	Integrate $v = 4t - t$	to find v $r^2(+c)$	M1 A1	Increase of powers se	en at least once			
	Use $t = 0$), $v = 12$ to find $c = 12$	B1					
	v = 4t - t	$t^2 + 12$	M1	Solve three term quad				
	<i>t</i> = 6		A1 [5]	Do not penalize $t = -2$.				
(ii)		e to find s	M1	Increase of powers on	at least 2 terms			
	$s = 2t^2 - $	$\frac{t^3}{2} + 12t$	A1√	3 terms				
		3	A1	cao				
	<i>s</i> = 72		[3]					
11 (a)	$\tan x = -$	2.25	B1					
	114		B1	Rounds to 114.0 isw				
	294		B1√* [3]	Their 114 + 180 from	tan function isw			
(b)	Uses co	$\sec y = \frac{1}{\sin y}$	B1	Seen anywhere				
	Forms q	uadratic in sin y : $12\sin^2 y + \sin y - 1$	M1	Must be 3 terms				
	[=0]	$1)(2\sin y + 1)[= 0]$	M1	Factorico or formula d	of 2 torm quadratia			
	14.5 and		A1	Factorise or formula of Any 2 values isw	or 5 term quadratic.			
	165.5 an		Al	The other 2 values isv	V			
(c)			[5]					
(0)	$\cos\left(\frac{z}{3}\right)$	$=\frac{3}{5}$	B1					
	$\frac{z}{3} = 0.92$	7	M1	Solves their equation	in radians			
	z = 2.78 t	to 2.79 inc	A1	isw				
	<i>z</i> = 16.1		A1	Rounds to isw				
			[4]					
12 EITH	IER			x				
	$y A e^{-\frac{1}{4}x}$)	M1	Integrate : e^{-4} seen				
(i)		+c)	A1					
	A = -4	(0.10)	DM1					
	Substitute							
	<i>y</i> =14-4	$e^{-\frac{x}{4}}$	A1					
	14-4e		A1 [5]					
(ii)	Tangent a	t A is y - 10 = x	B1					
		tangent at B is e	B1					
	Tangent a	t B is y + 4e - 14 = ex + 4e	В1√^	With their gradient an	d answer to (i)			
	-	ations of tangents	M1	Two linear equations				
	$x = \frac{4}{1 - 2}$			1				
	$x = \frac{1}{1-e}$).e.	A1					
			[5]					

Page 7		Mark Scheme	Syllabus	Paper	
		GCE O LEVEL – October/N	GCE O LEVEL – October/November 2012		22
12 OR				r	
(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{1}{3}$	$e^{-\frac{1}{3}x}$	M1	$Ae^{-\frac{x}{3}}$ only one term	
		$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{1}{3}$	A1		
	Grad not	rmal = 3	M1	Use of $m_1 m_2 = -1$	
	Point Q	is (-3, 0)	A1	Condone $x = -3$	
	~		[4]		
(ii)	Area rec	tangle 24 + 3e (32.1)	M1	Their $3 \times \text{their}(8+e)$	
	$\int_{-3}^{0} 8 + e^{-\frac{1}{2}}$	$-\frac{x}{3}$ dx	M1	Integrate: $8x$ and $e^{-\frac{x}{3}}$ s	seen
	$=\left[8x-3\right]$	$e^{-\frac{x}{3}} \bigg]_{-3}^{0}$	A1		
	21+3e (2	29.1)	M1	Correct use of limits t	heir -3 and 0
	Shaded a	area =3	A1		
			A1		
			[6]		